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ABSTRACT: Two-dimensional (2D) materials are extensively ex-
plored due to the remarkable physical property and the great potential
for post-silicon electronics since the landmark achievement of
graphene. The monolayer (ML) MoS2 with a direct energy gap is a
typical 2D material and promising candidate for a wide range of device
applications. The extensive efforts so far have focused on the optical
valley control applications of ML MoS2 rather than the electrical
control of spin and valley transport. However, the electrical
manipulation of spin injection and transport is essential to realize
practical spintronics applications. Here, we theoretically demonstrated that the valley and spin transport can be electrically
manipulated by a gate voltage in a normal/ferromagnetic/normal monolayer MoS2 junction device. It was found that the fully
valley- and spin-polarized conductance can be achieved due to the spin−valley coupling of valence-band edges together with the
exchange field, and both the amplitude and direction of the fully spin-polarized conductance can be modulated by the gate
voltage. These findings not only provided deep understanding to the basic physics in the spin and valley transport of ML MoS2
but also opened an avenue for the electrical control of valley and spin transport in monolayer dichalcogenide-based devices.
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■ INTRODUCTION

Owing to the remarkable physical properties and the great
potential for post-silicon electronics, two-dimensional (2D)
materials1−9 have been extensively explored since the landmark
achievement of graphene.1−3 Recently, some significant
developments have demonstrated that the monolayer (ML)
MoS2,

6−9 a typical layered transition-metal dichalcogenide, is a
semiconductor with a relatively large direct energy gap (∼1.8
eV).10−13 It is demonstrated that ML MoS2 has reasonable in-
plane carrier mobility, high thermal stability, and good
compatibility with standard semiconductor manufacturing.14

These satisfied properties render ML MoS2 as a promising
candidate for a wide range of applications, including photo-
luminescence at visible wavelengths,10,15 photodetectors with
high responsivity,12 and field-effect transistors14,16,17 with
room-temperature current on/off ratios exceeding 108. Unlike
graphene, where the spin−orbit coupling (SOC) vanishes,18,19

ML MoS2 has strong SOC, and this characteristic together with
the inversion asymmetry gives rise to large valley-dependent
spin splitting on the top of valence bands.7−9,11,20−22 It is
noteworthy that the exotic spin splitting can suppress the spin
relaxation and result in long spin lifetimes regardless of the
strong SOC.7,21−24 Recent polarization-resolved photo-
luminescence measurements have observed that the spin
lifetimes in ML MoS2 can reach to the order of 1 ns,23 which
opens a realm of spintronics applications in ML MoS2-based
devices. In addition, the conduction and valence-band edges of
ML MoS2 constitute a binary index for low-energy carriers. Due

to the large valley separation in the momentum space, the
valley index is robust against smooth deformation and low-
energy phonons.7 This characteristic can be interesting to
explore potential applications in valleytronics.23−25 Indeed,
some precursory works have demonstrated the viability of the
valley-based electronic24,25 and optical valley control applica-
tions of ML MoS2.

23

In contrast to the extensive theoretical and experimental
efforts on the photoluminescence, transistors, and optical valley
control applications of ML MoS2, the electrical control of spin
and valley transport in ML MoS2 has not been explored yet. As
a major goal of spintronics, the electrical manipulation of spin
injection and transport is essential to realize practical
spintronics applications. In light of the above discussion, in
this contribution, we theoretically propose a normal/
ferromagnetic/normal (NFN) monolayer MoS2 junction and
investigate the gate-voltage-tuned charge and valley and spin
transport properties. Intriguingly, we find that the fully valley-
and spin-polarized currents can be obtained simultaneously in
this device. We emphasize that the spin splitting near the
valence-band edges is essential to the valley-polarized transport,
and this characteristic can only exist in ML MoS2 but is absent
in graphene26,27 and silicene.28 Importantly, both the amplitude
and direction of the spin-polarized currents can be conveniently

Received: October 27, 2013
Accepted: January 8, 2014
Published: January 13, 2014

Research Article

www.acsami.org

© 2014 American Chemical Society 1759 dx.doi.org/10.1021/am4047602 | ACS Appl. Mater. Interfaces 2014, 6, 1759−1764

www.acsami.org


modulated by the gate voltage. Additionally, the conditions for
realizing the fully valley- and spin-polarized conductance are
deduced analytically. These results thus introduce the
transition-metal dichalcogenide as a fascinating material for
spin- and valleytronics and open up an avenue for the electrical
control of valley and spin polarization transport in ML MoS2.

■ THEORY
We consider a NFN junction based on the monolayer MoS2, as
shown in Figure 1. A voltage gate is placed on the top of the

ferromagnetic region to generate an electrostatic modulation,
and the electrostatic potential is taken as U in the ferromagnetic
region and 0 otherwise. We emphasize here that, in stark
contrast to that of ref 28, the electrostatic potential in the
proposed model is only utilized to tune the Fermi level but not
to modulate the energy gap as well as the topological phase.
Actually, for a flat ML MoS2 sheet, the energy gap cannot be
modulated by a perpendicular electric field.29−31 The exchange
field can be induced by the magnetic proximity effect, which has
been extensively explored in graphene,26,27 silicene,28 and
conventional two-dimensional electron gas.32 As proposed by
Ye et al.,32 by depositing an array of ferromagnetic dysprosium
strips on the top of a GaAs−AlGaAs heterojunction, a
considerable one-dimensional periodic magnetic field can be
achieved. Similar method can be used in our device to get an
exchanged field.
Here we assume the strip width Ly (along the y direction) is

much larger than the strip length L (along the x direction), so
that the microscopic details of the strip edges can be safely
neglected and the translational invariance in the y direction is
preserved. These assumptions have been extensively applied to
similar models based on graphene33−35 and TI.36−38

To linear order in k, the effective Hamiltonian in the
ferromagnetic region is given by7−9

τ σ σ σ λτ σ λτ= ℏ + + Δ + − + −

+

H v k k s s s h

U

( ) ( )z x x y y z z z z z z z

(1)

where τz = ±1 denotes the K and K′ valleys, respectively, while
sz = ±1 stands for the electron spin ↑and ↓, and the Pauli
matrices σx,y,z operate on the space of the dz2 and (dx2−y2 ±
idxy)/√2 orbitals; kx,y is the momentum measured with respect
to the K(K′) point, the Fermi velocity v = 5.3 × 105 m·s−1, λ =
37.5 meV is the spin splitting near the valence-band edges
induced by the SOC, and Δ = 833 meV is the band gap
originating from the inversion asymmetry between orbitals dz2
and (dx2−y2 ± idxy)/√2.7−9 Here, h is the exchange field added
in the ferromagnetic region. According to eq 1, the energy
dispersions in the ferromagnetic region are given by

τ λ τ λ= + − ± Δ − + ℏ ′±E U s s h s vk( ) ( ) ( )z z z z z
2 2

(2)

where k′2 = (τzkx′)2 + ky
2 and ± labels the occupied and empty

bands, respectively. In the normal regions, the energy
dispersions can be obtained by substituting h = 0, U = 0, and
k2 = (τzkx)

2 + ky
2 into eq 2. It is important to point out that the

effective continuum model described in eq 1 is only valid for
the low-lying physics of ML MoS2. Thus, the corresponding
parameters should be chosen to ensure the validity of eq 1.
Additionally, the responses of conduction bands and valence
bands to the exchanged field should be different due to their
different orbit originations. Nevertheless, we neglect this point
in all calculations. This approximation is valid, as it has been
successfully utilized in some literature.8,9

Owing to the translational invariance in the y direction, the
wave function in each region can be described as
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with k± = τzkx ± iky, k±′ = τzkx′ ± iky, EM = E± − Δ, EN = ((ℏvk)2

+ EM
2 )1/2, and EF = E± − U − Δ + szh, where aτzsz, bτzsz, rτzsz, and

tτzsz are the valley- and spin-resolved scattering coefficients.
Then, following the standard procedure of mating the wave
functions at the interfaces of regions I and II and regions II and
III (see Figure 1), the spin- and valley-resolved transmission
probability can be analytically obtained

ξ
=

′
τ

−

′T
k k E E e

e

4
s
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ik L
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where ξ = {EM
2 k′2 + EMEF(k+k+′ + k−k−′ ) + EF

2k2}e−2ikx′L +
EMEF(k+k−′ + k−k+′) − EM

2 k′2 − EF
2k2. From the transmission

probability, the normalized valley- and spin-resolved con-
ductance at zero temperature is given by28
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where θ = tan−1(ky/kx) is the incident angle defined in
momentum space. According to eq 7, the valley-resolved
conductance can be introduced

′ = ′ + ′↑ ↓G
G G

2K( )
K( ) K( )

(8)

and the valley- and spin-polarized conductance can be defined
as28
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In addition, the normalized charge conductance reads

Figure 1. Illustration of normal/ferromagnetic/normal monolayer
MoS2 junction device.
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= + ′G G Gc K K (11)

■ RESULTS AND DISCUSSION
We note that the uppermost valence band (UVB) of ML MoS2
at Γ point is quite close in energy to the K point. According to
Ellis et al.,11 the energy difference between the UVBs of Γ point
and K point is δEΓ−K = 0.26 eV. Considering that the effective
continuum model described in eq 1 is only valid for the low-
lying physics of ML MoS2, we restrict the electrostatic potential
U ranges from −0.3Δ to 2.2Δ in the following calculations and
single out the exchange field h = 0.2Δ and the Fermi energy E
= 1.2Δ. In doing so, the largest energy separation between the
UVB and the Fermi level at K point is xmax = Umax + h − Δ + 2λ
− E ≈ 0.24 eV < δEΓ−K, which means that the Fermi level, in all
cases, can be immune to intersect with the valence bands near
the Γ point. Therefore, for the transport properties addressed
here, it is rational to neglect the contribution from the band
near the Γ point, and the low-lying continuum model is
appropriate for all calculations. In addition, it is reported that
the lowermost of the conduction bands possess a spin splitting
of about 3−4 meV.20,22 Since it is one magnitude lower than
the UVB spin splitting scale λ and two magnitudes lower than
Δ, we neglect this spin splitting in this study.
We first investigate the valley-resolved conductance. Figure

2a illustrates the valley-resolved conductance GK(GK′) as a

function of the normalized length kFL(kF = E/(ℏv)). For U =
0.2Δ, the valley-resolved conductances GK and GK′ take the
same values, and both of them are insensitive to the length of
the ferromagnetic MoS2 strip L. Therefore, the valley-resolved
transport is nonpolarized (see Figure 2b). When U = 2.0Δ, GK
is totally suppressed while GK′ takes finite value and oscillates
with L. This phenomenon mainly originates from the opposite
spin splitting of the valence-band edges near the K and K′
points. Moreover, the differences of the spin splitting between
the two valleys can be further enlarged by the exchanged field h.
Consequently, only the charge carriers stemming from the K′
valley can contribute to the conductance, which results in a fully
valley-polarized transport, as shown in Figure 2b. When the
normalized length kFL is large enough (>7.6), the fully valley-
polarized conductance can be achieved regardless of the

ferromagnetic strip length L. For kFL < 7.6, the valley-polarized
conductance exponentially decays with decreasing the
(normalized) sample length. These phenomena can be
expected. For U = 2.0Δ, the Fermi level drops into the energy
gap of K valley (see Figure 5e), which results in the appearance
of evanescent modes near the incident side of the ferromagnetic
region. When the length L is small, these evanescent modes can
also contribute to the transport by tunneling, which results in a
finite K valley-resolved conductance. Therefore, the valley-
polarized conductance exponentially decays with decreasing the
sample length. As the tunneling probability exponentially
decays with increasing L, the tunneling process is totally
inhibited for a large L. Consequently, only the carriers near the
K′ point can contribute to the transport when L is large
enough, which results in a fully valley-polarized conductance
regardless of the sample length. By passing, the critical value
(Lc) of the sample length should be several the decay scales;
here the decay scale can be defined as 1/|Im(kx,τz=1′ )|. In our
calculation, the normalized critical scale kFLc is about 7.6.
Figure 2c,d exhibits the gate voltage U dependence of the

valley-resolved and valley-polarized conductances, respectively.
Red curves correspond to the conductance spectra when U/Δ
ranges from −0.3 to −0.1, and blue curves denote the
conductance spectra when U/Δ ranges from 1.9 to 2.2. As can
be seen, both GK and GK′ oscillate withU but take different
values, so a finite valley-polarized conductance can be expected
(see Figure 2d). Importantly, the differences between GK and
GK′ vary with the gate voltage; this means the valley-polarized
conductance can be effectively tuned by the gate voltage. When
the gate voltage U ranges from 1.92Δ to 2.11Δ, a fully polarized
conductance can be achieved. The Fermi level drops into the
energy gap when U/Δ ranges from −0.1 to 1.9 and results in a
trivial conductance G = 0, in which we omit the plots of this
regime in Figure 2c,d.
Figure 3a presents the spin-polarized conductance as a

function of the normalized sample length kFL. For U = 0.2Δ,

since the spin degeneracy of the conduction band edges can be
removed by the exchange field, a f ully spin-polarized
conductance is achieved. It is also observed that the spin-
resolved conductance is fully polarized when U = 2Δ, and this
characteristic mainly results from the spin splitting on the top
of the valence bands. We note that, for U = 0.2Δ and U = 2Δ,
the configurations of spin-polarized conductance spectra are
similar to that of valley-polarized conductance spectra. This
point can be understood by the similar mechanism that was
mentioned in the valley-polarized transport. Because the Fermi
level only intersects with spin up (down) bands for U = 0.2Δ
(U = 2Δ), evanescent modes can exist in the ferromagnetic

Figure 2. Dependence of kFL (a) valley-resolved conductance GK(GK′)
and (b) valley-polarized conductance. Gate voltage U dependence of
(c) the resolved conductance GK(GK′) and (d) valley-polarized
conductance; h = 0.2Δ and E = 1.2Δ in all panels.

Figure 3. Spin-polarized conductance Gs as a function of L (a) and U
(b); the other parameters are the same as those in Figure 2.

ACS Applied Materials & Interfaces Research Article

dx.doi.org/10.1021/am4047602 | ACS Appl. Mater. Interfaces 2014, 6, 1759−17641761



region and contribute to the conductance when L is small
enough. Here, the critical normalized length kFLc ≈ 7. For the
case of U = −0.2Δ, the spin-polarized conductance exhibits
slight oscillations but with nearly zero average values. It is
observed that the exponential decaying characteristic disap-
pears. Because the Fermi level, in this situation, simultaneously
intersects with the spin up and down bands, evanescent modes
cannot be induced. Consequently, the transport all originates
from propagating modes, and the spin-polarized conductance
exhibits nearly periodic oscillations. Figure 3b plots the spin-
polarized conductance as a function of the gate voltage. As can
be seen, both the amplitude and direction of the spin-polarized
conductance can be effectively tuned by the gate voltage
regardless of the sample length L, and the direction of the spin-
polarized conductance can be controlled only by the gate
voltage but without changing the direction of the exchange
field.
The charge transport properties are shown in Figure 4.

Owing to the tunneling effect, when kFL < 5, the charge

conductance exponentially decreases with increasing kFL. When
kFL is greater than 5, the charge conductance exhibits quite
different behaviors for small (U = 0.2Δ) and large gate voltage
(U = 2Δ). This is because the transport processes in the two
situations are different; namely, the intraband transport occurs
for U = 0.2Δ while interband transport process occurs for U =
2Δ. Because of the electron−hole asymmetry, the conductance
of the interband transport process exhibits relatively large
oscillations. Due to the relatively large energy gap, the charge
conductance possesses a good on/off switching effect, which
may be interesting for device application.
These interesting scenarios can be understood from the

electronic structures in each region of the NFN junction, as
shown in Figure 5. The left and right panels correspond to the
K and K′ valleys, respectively. For normal regions (Figure
5a,b), the uppermost valence bands of two valleys possess
opposite spin splitting. In the presence of exchange field
(Figure 5c−h), the spin degeneracy on the bottom of the
conduction bands is removed. Importantly, the exchange field
can further extend the difference between the spin splitting gaps
at the two valleys, this point is essential to the valley-polarized
transport. For U = 0.2Δ (Figure 5c,d), the Fermi level crosses
bands at both K and K′ valleys, so the charge carriers at both
valleys can contribute to the conductance and result in a
relatively large charge conductance but a nearly vanished valley-
polarized conductance. On the other hand, a fully spin-
polarized conductance can be achieved because the Fermi level
only intersects with the spin up bands. When U = 2Δ, as
illustrated in Figure 5e,f, the Fermi level only crosses the spin
down band of the K′ valley due to the spin splitting together

with the exchange field. Therefore, only the spin down charge
carriers stemming from the K′ valley can contribute to the
conductance, and both f ull valley- and spin-polarized
conductance can be achieved in this situation. We emphasize
here that this scenario originates from the spin splitting on the
top of the valence bands, which is quite different from that of
graphene26,27 and silicene.28 The case of U = −0.2Δ is shown in
Figure 5g,h. As can be seen, the Fermi level crosses both the
spin up and down bands, and thus the charge carriers with spin
up and down at both valleys can equally contribute to the
conductance. Consequently, both the valley and spin transport
are not polarized.
From the above discussion, it is concluded that one valley

should be totally suppressed while the other must keep
conductive to realize the full valley-polarized transport. To do
so, the gate voltage U and the exchange field h should satisfy
the quantitative condition

λ λ| − | || < − + Δ < + | |h E U h2 2 (12)

For the fully spin-polarized transport, the Fermi level should
only intersect with spin up (down) bands at both valleys, and
the quantitative condition is given by

λ| − + Δ − | < | |E U h2 (13)

Owing to the exchange field, the Fermi level can also be tuned
to the bottom of the conduction bands to realize the fully spin-
polarized transport, and the condition reads

| − − Δ| < | |E U h (14)

Figure 4. Normalized charge conductance Gc as a function of L (a)
and U (b); the other parameters are the same as those in Figure 2.

Figure 5. Band structures at the K and K’ valleys. The left (right)
panel denotes the K(K′) valley. Red (sz = +1) and blue (sz = −1)
curves correspond to the spin up and down bands, respectively. The
other parameters are taken as follows: (a,b) h = 0 and U = 0; (c,d) h =
0.2Δ and U = 0.2Δ; (e,f) h = 0.2Δ and U = 2.0Δ; (g,h) h = 0.2Δ and
U = −0.2Δ. Black horizontal lines in all panels denote the Fermi levels
E = 1.2Δ.
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These conditions are illustrated in Figure 6, where we present
the contour plots of (a) valley- and (b) spin-polarized

conductance, with kFL = 20 and E = 1.2Δ. As can be seen,
both the valley- and spin-polarized conductances are odd
functions of h; this means that the polarization directions are
associated with the exchange field. It is observed that the spin-
polarized conductance can be realized within a large range of
gate voltage. More importantly, both the amplitude and
direction of spin-polarized conductance can be modulated by
the gate voltage.
In this work, the band overlapping is not considered, so the

exchange field should satisfy

λ| | < Δ −h ( ) (15)

The electrically controllable valley- and spin-polarized transport
properties in the present work are based on the novel spin and
valley physics of ML MoS2. To practically realize these
properties, the sample length should be large enough to
suppress the tunneling effect, and the exchange field can be
induced by the magnetic proximity effect caused by magnetic
insulators.

■ CONCLUSION
In conclusion, the charge, valley, and spin transport properties
of a NFN MoS2 junction have been carefully studied. It was
found that the charge, valley, and spin transport in this junction
can be effectively manipulated by a gate voltage. Owing to the
spin−valley coupling of valence-band edges, the fully spin- and
valley-polarized conductances can be simultaneously obtained.
Moreover, both the amplitude and direction of the spin-
polarized conductance can be conveniently controlled by the

gate voltage. It was observed that the charge transport in the
proposed device is insensitive to the structure parameters,
which is a benefit for the device manufacture. The band
structures in each region of the NFN MoS2 junction were
introduced to understand these novel transport results. The
conditions for realizing the fully valley- and spin-polarized
conductance are analytically concluded. These results provide
an avenue for the electrical control of valley- and spin-polarized
transport in MoS2-based devices.

■ AUTHOR INFORMATION

Corresponding Author
*E-mail: stsygw@mail.sysu.edu.cn.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work is supported by the State Key Laboratory of
Optoelectronic Materials and Technologies of Sun Yat-sen
University. D.X.Y. is supported by NBRPC-2012CB821400,
NCET-11-0547, and RFDPHE-20110171110026.

■ REFERENCES
(1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang,
Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306,
666−669.
(2) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.;
Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A.
Nature 2005, 438, 197−200.
(3) Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich,
V. V.; Morozov, S. V.; Geim, A. K. Proc. Natl. Acad. Sci. U.S.A. 2005,
102, 10451−10453.
(4) Liu, C.-C.; Feng, W.; Yao, Y. Phys. Rev. Lett. 2011, 107, 076802.
(5) Chen, L.; Liu, C.-C.; Feng, B.; He, X.; Cheng, P.; Ding, Z.; Meng,
Z.; Yao, Y.; Wu, K. Phys. Rev. Lett. 2012, 109, 056804.
(6) Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Phys. Rev. Lett.
2010, 105, 136805.
(7) Xiao, D.; Liu, G.-B.; Feng, W.; Xu, X.; Yao, W. Phys. Rev. Lett.
2012, 108, 196802.
(8) Lu, H.-Z.; Yao, W.; Xiao, D.; Shen, S.-Q. Phys. Rev. Lett. 2013,
110, 016806.
(9) Li, X.; Zhang, F.; Niu, Q. Phys. Rev. Lett. 2013, 110, 066803.
(10) Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.;
Galli, G.; Wang, F. Nano Lett. 2010, 10, 1271−1275.
(11) Ellis, J. K.; Lucero, M. J.; Scuseria, G. E. Appl. Phys. Lett. 2011,
99, 261908.
(12) Lee, H. S.; Min, S.-W.; Chang, Y.-G.; Park, M. K.; Nam, T.; Kim,
H.; Kim, J. H.; Ryu, S.; Im, S. Nano Lett. 2012, 12, 3695−3700.
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